System-Aware Smart Network Management for Nano-Enriched Water Quality Monitoring

By: Mokhtar, B (Mokhtar, B.) [1,2]; Azab, M (Azab, M.) [2,3,4]; Shehata, N (Shehata, N.) [2,5,6]; Rizk, M (Rizk, M.) [1,2]

Abstract
This paper presents a comprehensive water quality monitoring system that employs a smart network management, nano-enriched sensing framework, and intelligent and efficient data analysis and forwarding protocols for smart and system-aware decision making. The presented system comprises two main subsystems, a data sensing and forwarding subsystem (DSFS), and Operation Management Subsystem (OMS). The OMS operates based on real-time learned patterns and rules of system operations projected from the DSFS to manage the entire network of sensors. The main tasks of OMS are to enable real-time data visualization, managed system control, and secure system operation. The DSFS employs a Hybrid Intelligence (HI) scheme which is proposed through integrating an association rule learning algorithm with fuzzy logic and weighted decision trees. The DSFS operation is based on profiling and registering raw data readings, generated from a set of optical nanosensors, as profiles of attribute-value pairs. As a case study, we evaluate our implemented test bed via simulation scenarios in a water quality monitoring framework. The monitoring processes are simulated based on measuring the percentage of dissolved oxygen and potential hydrogen (PH) in fresh water. Simulation results show the efficiency of the proposed HI-based methodology at learning different water quality classes.

Keywords
KeyWords Plus: WIRELESS SENSOR NETWORKS; DISSOLVED-OXYGEN; DOPED CERIA; NANOPARTICLES

Author Information
Reprint Address: Mokhtar, B (reprint author)
Univ Alexandria, CSNP, SmartCI Res Ctr, Alexandria, Egypt.

Addresses:
[2] Univ Alexandria, CSNP, SmartCI Res Ctr, Alexandria, Egypt

View ResearcherID and ORCID
JOURNAL OF SENSORS
Article Number: 3023018
DOI: 10.1155/2016/3023018
Published: 2016
Organization-Enhanced Name(s)
State University System of Florida
University of Florida

Organization-Enhanced Name(s)
Alexandria University

Organization-Enhanced Name(s)
Utah State University
Utah System of Higher Education

E-mail Addresses: bassem.mokhtar@gmail.com

Funding

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Technology Industry Development Agency (ITIDA Egypt)</td>
<td>ARP2013.R13.2</td>
</tr>
</tbody>
</table>

The presented work is part of the awarded Grant “ARP2013.R13.2” funded by Information Technology Industry Development Agency (ITIDA Egypt).

Publisher
HINDAWI PUBLISHING CORP. 315 MADISON AVE 3RD FLR, STE 3070, NEW YORK, NY 10017 USA

Categories / Classification
Research Areas: Engineering; Instruments & Instrumentation
Web of Science Categories: Engineering, Electrical & Electronic; Instruments & Instrumentation

Document Information
Document Type: Article
Language: English
Accession Number: WOS:000383064200001
ISSN: 1687-725X
eISSN: 1687-7268

Journal Information
Table of Contents: Current Contents Connect®
Impact Factor: Journal Citation Reports®

Other Information
IDS Number: DV6RJ
Cited References in Web of Science Core Collection: 36
Times Cited in Web of Science Core Collection: 0
Fluorescent microparticles for sensing cell microenvironment oxygen levels within 3D scaffolds
By: Acosta, Miguel A.; Ymele-Leki, Patrick; Kostov, Yordan V.; et al.
BIOMATERIALS Volume: 30 Issue: 17 Pages: 3068-3074 Published: JUN 2009
Full Text from Publisher
View Abstract
Times Cited: 29

Mining association rules between sets of items in large databases
By: Agrawal, R.; Imielinski, T.; Swami, A.
SIGMOD Rec. Volume: 22 Pages: 207-216 Published: 1993
Full Text from Publisher
Times Cited: 316

Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments
By: Atkinson, Clare A.; Jolley, Dianne F.; Simpson, Stuart L.
CHEMOSPHERE Volume: 69 Issue: 9 Pages: 1428-1437 Published: NOV 2007
Full Text from Publisher
View Abstract
Times Cited: 117

Times Cited: 1

Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents
By: Chen, HI; Chang, HY
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS Volume: 242 Issue: 1-3 Pages: 61-69 Published: AUG 2 2004
Full Text from Publisher
View Abstract
Times Cited: 178

Recent advances in molecular imprinting technology: current status, challenges and highlighted applications
By: Chen, Lingxin; Xu, Shoufang; Li, Jinhua
CHEMICAL SOCIETY REVIEWS Volume: 40 Issue: 5 Pages: 2922-2942 Published: 2011
View Abstract
Times Cited: 556

Optical fiber dissolved oxygen sensor based on Pt(II) complex and core-shell silica nanoparticles incorporated with sol-gel matrix
By: Chu, Cheng-Shane; Lo, Yu-Lung
SENSORS AND ACTUATORS B-CHEMICAL Volume: 151 Issue: 1 Pages: 83-89 Published: NOV 26 2010
Full Text from Publisher
View Abstract
Times Cited: 33

Data Collection in Wireless Sensor Networks with Mobile Elements: A Survey
By: Di Francesco, Mario; Das, Sajal K.; Anastasi, Giuseppe
Times Cited: 95
<table>
<thead>
<tr>
<th>Entry</th>
<th>Title</th>
<th>By:</th>
<th>Conference/Sponsor</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Published</th>
<th>Times Cited</th>
<th>Collection</th>
<th>Abstract Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Wireless, automated monitoring for potential landslide hazards</td>
<td>Garich, E. A.</td>
<td>Texas A&M University</td>
<td>8</td>
<td>1</td>
<td></td>
<td>Aug 2011</td>
<td>2</td>
<td>SciFinder</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>A survey on data aggregation and clustering schemes in underwater sensor networks</td>
<td>Kumar, R.; Singh, N.</td>
<td>International Journal of Grid and Distributed Computing</td>
<td>7</td>
<td>6</td>
<td>29-52</td>
<td>2014</td>
<td>2</td>
<td>SciFinder</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Opportunistic Routing Algorithm for Relay Node Selection in Wireless Sensor Networks</td>
<td>Luo, Juan; Hu, Jinyu; Wu, Di; et al.</td>
<td>IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS</td>
<td>11</td>
<td>1</td>
<td>112-121</td>
<td>Feb 2015</td>
<td>3</td>
<td>SciFinder</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Increasing nutrient concentrations and the rise and fall of a coastal fishery: a review of data from the Nile Delta, Egypt</td>
<td>Oczkowski, Autumn; Nixon, Scott</td>
<td>Estuarine Coastal and Shelf Science</td>
<td>77</td>
<td>3</td>
<td>309-319</td>
<td>2008</td>
<td>25</td>
<td>SciFinder</td>
<td></td>
</tr>
</tbody>
</table>
24. Opportunistic networking: Data forwarding in disconnected mobile ad hoc networks
By: Pelusi, Luciana; Passarella, Andrea; Conti, Marco
IEEE COMMUNICATIONS MAGAZINE Volume: 44 Issue: 11 Pages: 134-141 Published: NOV 2006
Times Cited: 2,104
(From Web of Science Core Collection)

25. Oxygen sensors: Materials, methods, designs and applications
By: Ramamoorthy, R; Dutta, PK; Akbar, SA
JOURNAL OF MATERIALS SCIENCE Volume: 38 Issue: 21 Pages: 4271-4282 Published: NOV 1 2003
Times Cited: 197
(From Web of Science Core Collection)

26. Thickness Dependency of Thin-Film Samaria-Doped Ceria for Oxygen Sensing
By: Sanghavi, Rahul; Nandasiri, Manjula; Kuchibhatla, Satyanarayana; et al.
IEEE SENSORS JOURNAL Volume: 11 Issue: 1 Pages: 217-224 Published: JAN 2011
Times Cited: 12
(From Web of Science Core Collection)

By: Seada, K.; Zuniga, M.; Helmy, A.; et al.
Times Cited: 90
(From Web of Science Core Collection)

28. Study of optical and structural characteristics of ceria nanoparticles doped with negative and positive association lanthanide elements
By: Shehata, N.; Meehan, K.; Hudait, M.; et al.
Times Cited: 2
(From Web of Science Core Collection)

29. Study of Fluorescence Quenching in Aluminum-Doped Ceria Nanoparticles: Potential Molecular Probe for Dissolved Oxygen
By: Shehata, N.; Meehan, K.; Leber, D.
JOURNAL OF FLUORESCENCE Volume: 23 Issue: 3 Pages: 527-532 Published: MAY 2013
Times Cited: 9
(From Web of Science Core Collection)

30. Fluorescence quenching in ceria nanoparticles: dissolved oxygen molecular probe with relatively temperature insensitive Stern-Volmer constant up to 50 degrees C
By: Shehata, Nader; Meehan, Kathleen; Leber, Donald E.
JOURNAL OF NANOPHOTONICS Volume: 6 Article Number: 063529 Published: DEC 3 2012
Times Cited: 6
(From Web of Science Core Collection)